Model selection by LASSO methods in a change-point model
نویسندگان
چکیده
منابع مشابه
On Model Selection Consistency of Lasso On Model Selection Consistency of Lasso
Sparsity or parsimony of statistical models is crucial for their proper interpretations, as in sciences and social sciences. Model selection is a commonly used method to find such models, but usually involves a computationally heavy combinatorial search. Lasso (Tibshirani, 1996) is now being used as a computationally feasible alternative to model selection. Therefore it is important to study La...
متن کاملPath consistent model selection in additive risk model via Lasso.
As a flexible alternative to the Cox model, the additive risk model assumes that the hazard function is the sum of the baseline hazard and a regression function of covariates. For right censored survival data when variable selection is needed along with model estimation, we propose a path consistent model selector using a modified Lasso approach, under the additive risk model assumption. We sho...
متن کاملOn Model Selection Consistency of Lasso
Sparsity or parsimony of statistical models is crucial for their proper interpretations, as in sciences and social sciences. Model selection is a commonly used method to find such models, but usually involves a computationally heavy combinatorial search. Lasso (Tibshirani, 1996) is now being used as a computationally feasible alternative to model selection. Therefore it is important to study La...
متن کاملa study on insurer solvency by panel data model: the case of iranian insurance market
the aim of this thesis is an approach for assessing insurer’s solvency for iranian insurance companies. we use of economic data with both time series and cross-sectional variation, thus by using the panel data model will survey the insurer solvency.
A Note on the Lasso for Gaussian Graphical Model Selection
Inspired by the success of the Lasso for regression analysis (Tibshirani, 1996), it seems attractive to estimate the graph of a multivariate normal distribution by `1-norm penalised likelihood maximisation. The objective function is convex and the graph estimator can thus be computed efficiently, even for very large graphs. However, we show in this note that the resulting estimator is not consi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistical Papers
سال: 2012
ISSN: 0932-5026,1613-9798
DOI: 10.1007/s00362-012-0482-x